
Issued: March 3, 2006

Scate Manual

D. Alders

Authors’ address data: D. Alders ; d.alders@sourceforge.net

ii

:

Title: Scate Manual

Author(s): D. Alders

Part of project:

Customer:

Keywords: Multiprocessor mapping; System Level Design Technology; TTL;
YAPI

Abstract: This document is a preliminary version of an user manual for the
Triple-M tools. The installation and configuration of an unoffi-
cial release of the tooling is explained. After which the reader is
guided through a number of transformations on process networks.
All relevant source code is included in the manual. Furthermore,
iterations over transformations are explained.

Conclusions: After reading the user should be able to install and configure the
Scate tools. He /she should also be able to perform a number
of source code transformations on process networks, and setup
iterations over transformations with the help of version manage-
ment. All this provides the reader hands on experience, which
could lead to valuable feedback.

iii

iv

Contents

1 Introduction 1

1.1 Objective . 1

1.2 Intended audience . 1

1.3 Outline of document . 1

2 Setup 2

2.1 Installation . 2

2.2 Configuration . 2

2.3 Versions . 3

3 Overview 4

3.1 SCATE . 5

3.2 MPC . 5

3.3 Getting started . 6

4 Example transformations 11

4.1 File and directory restructuring . 12

4.2 Api transformation . 19

4.2.1 Api definition . 28

4.3 Network transformations . 29

4.3.1 Mapping file . 32

4.4 Consistency between various models . 32

4.4.1 Source code patching . 33

5 Problems, Troubleshooting 41

5.1 FAQ . 42

5.2 Bugs . 42

5.3 Wishlist . 42

A Examples: source code 43

A.1 File and directory restructuring . 43

A.2 Network transformations . 52

References 56

v

Distribution

vi

1 Introduction

1.1 Objective

This document is an user manual for the tools developed within the Triple-M project. The
objective of the tooling is to provide a system-level design and programming environment
for embedded multiprocessors.

The reader is guided - in a step-by-step fashion - through a set of transformations on
Producer-Consumer type of networks. All relevant input and output source code is in-
cluded in this manual.

After reading, one should be able to conduct similar transformations as presented here on
any hierarchical process network that can be described by the API description language
of the tooling.

The relevance and power of the tooling described in this document should become ap-
parent from the examples presented. One of the main objectives is to get feedback from
potential users even though the tools are still in an early stage of development. Hopefully,
the reader is inspired to propose new (relevant) transformations to further improve the
design and programming environment.

1.2 Intended audience

This document is primarily intended for application designers and system designers of
signal processing applications. The former specifies the functionality of the system, while
the latter implements the functionality. Both types of jobs are supported by the design and
programming environment described.

The models on which transformations can be applied are developed in the C / C++ lan-
guage. Knowledge of the C language suffices to describe the functionalities of the pro-
cesses. When applicable, knowledge of C++ is only required for the interfaces of the
processes and the structures of the process network(s). Furthermore, we assume that the
reader is familiar with Task Transaction Level modeling [1, 2, 3] in general.

The reader is strongly encouraged to go through all the source code examples presented,
and to actually perform the transformations him / her self. This provides the reader with
some valuable hands-on experience.

1.3 Outline of document

In chapter 2 we explain the installation and configuration process of the SCATE tool [4].
In chapter 3 we continue with several high level views on the tooling. An overview of the
input and output files involved is presented as well. Next, Producer-Consumer examples
are presented in chapter 4. All relevant source code fragments are included in the text.
Finally, we end with troubleshooting in chapter 5.

1

2 Setup

Releases of the tooling are available at sourceforge [4]. In this chapter we describe the
installation proces.

2.1 Installation

Download a source distribution of SCATE from sourceforge [4].

Choose a directory where you want to install the Triple-M tools, say ‘˜/Triple-M’. Change
into the directory and unpack the tarball:

tar fxzv scate-release-1.0.tgz

This will create a directory structure like:

˜/Triple-M/Scate-[release number]/ doc/
examples/ jpeg/

pc/
scripts/
share/ api/

include/
mapping/
symtab/

...

Read the INSTALL file at the toplevel, this contains the requirements that should be
fulfilled, and details about the compilation steps.

As can be read in the INSTALL file It is assumed that the runtime environment(s) of
the process network(s) at hand are properly installed. A YAPI runtime environment can
be obtained from sourceforge [2]. In this manual we also make use of another runtime
environment called TTL. Unfortunately, TTL is only available to the Philips community.
For the examples that require TTL alternative source code is recommended. In due time
this manual may be rewritten to only include YAPI examples.

For a correct installation all steps described in section 2.2 need to be completed as well.

2.2 Configuration

The easiest and most flexible way to configure the Triple-M tooling is by defining envi-
ronment variables. For some of these variables separate example scripts are provided. For
example the various implementations of the functional runtime environment of YAPI can
be selected by using the script:

• yapiInit

2

This script should be manually configured to reflect the directories used in your local
environment. The environment variables are defined for the current shell. Thus these
scripts should be activated like (with an optional argument):

. yapiInit [argument]

The definition of all the environment variables involved in the Triple-M tooling can best
be collected in one file. Such a file can be executed during startup, e.g. via “.vueprofile”
when using Linux. This would then statically define the environment variables for all
shells at login. Another way of working is to collect them in a file that is executed before
the tool is used, e.g. in an executable file. In this way the tooling versions with which a
process network is transformed is automatically documented.

exports $YAPIROOT
. yapiInit

Directory where Triple-M release can be found
export TRIPLEMROOT=/path/to/Triple-M/Scate-[release number]
echo TRIPLEMROOT=$TRIPLEMROOT

MPC version used
export MPC=/path/to/mpc/
echo MPC=$MPC

As long as there is no official installation process defined for the Triple-M tools one has to
manually add the toplevel, and scripts directories of the release to the executable PATH.

export PATH=$PATH:$TRIPLEMROOT/:
$TRIPLEMROOT/scripts/

2.3 Versions

The following versions are used and ‘supported’:

• TTL C++ tag v1 01.

• TTL C tag JK6.

• YAPI from sourceforge [2]

• MPC from sourceforge [5]

Assumptions made about your local installation:

• Gcc version 3.x, 4.x.

• Imake.

• Qt version 3.3.

3

3 Overview

A high level view of the Triple-M tools is presented in Figure 1. There are basically two
sets of input files. One set describes the function to be implemented that is captured in an
executable process network structure. The other set contains the design decisions made
by the system architect to efficiently implement the function. The tools apply design
decisions on the process network and produces a set of output files. These files serve as
input for either additional manual modifications, another iteration cycle using the tools,
or existing hardware and / or software compilers.

process
network

design
decisions

Output files

Triple−M tools

Figure 1: User view on the Triple-M tools.

The Triple-M tools are able to extract the process network from C++ source code - written
in YAPI or TTL type syntax - , see reference [6] for more detailed information. Thereby,
allowing the system architect to specify transformations on process networks, i.e. the tool
itself cannot invent transformations. The output files are automatically restructured to fit
one consistent software style. By this we mean for example that each process and each
network has its own directory with separate header and source files. This programming
style is enforced even when the input files uses a different style. Furthermore, Imake-
files [7] are generated such that the output can be readily compiled.

Another high level view on the Triple-M tools is shown in Figure 2. From the figure it is
clear that the Triple-M tools consist in fact out of two seperate tools; SCATE (Source
Code Analysis and Transformation Environment), and MPC (Multi Purpose Network
Compiler), see section 3.2.

All C++ source code provided to the tools is first run through the gcc preprocessor. This
has consequences for comments and macros in the source code. The former is simply
removed 1, while the latter is expanded. The output of this preprocessing step is a set of
‘*.cpp’ files. These preprocessed files combined with the user defined input files are fed
into the SCATE tool.

1In future versions we would like to prevent this from happening.

4

The SCATE tool internally separates the functional source code from the network struc-
ture. This results in two sets of intermediate output files2 as shown. MPC combines these
two sets and produces output files 3 where the functional source code and the network
structure are combined again. The extraction of the network structure allows to switch
between different output formats. In practice this is done by selecting a different driver,
e.g. MPC is equipped with a C++ (YAPI / TTL), C (TTL), and a VHDL network driver.

function
(YAPI)

P2
P3P1

decisions
design T1T2

design/
program
(TTL)

C++
generation

MPC

C++
preprocessing

network
SCATE

functional code

Figure 2: High level view on the flow of data through the Triple-M tools.

3.1 SCATE

The SCATE tool as described above can (internally) be further subdivided into several
components as shown in figure 3. The arrows between the components indicate the flow
of information through the tools.

The preprocessed set of input files is parsed to build an abstract syntax tree (AST). This
internal representation can be traversed - while enriching and / or transforming the AST -
using visitors [8]. After this step the AST can be printed in output files which can on its
turn be used as input for other tools as shown.

The tooling is able to recognize and extract the network and the member functions of
YAPI and TTL. This is accomplished by providing a (programmable) description of these
api’s to the tooling which is generic enough to express current versions of both YAPI and
TTL. In this way the tooling itself does not have to know the programmable details of
those api’s.

3.2 MPC

MPC is a tool for the generation of network descriptions [5]. It is multi purpose since it is
intended to generate network descriptions in different languages or formats from the same
input specification. Currently the following language drivers are available: C++ (YAPI /
TTL), C (TTL), and VHDL.

2Intermediate files produced by SCATE: *.MPC, installfile.yapi, installfile.yapi.*, *.net.
3Intermediate files produced by MPC are not explicitly shown in the figure: installfile.*.yapi.

5

AST

visitor

T1T2

design /
program
(TTL)

function
(YAPI)

P2
P3P1

design
decisions

C++
preprocessing

Parser

C++
generation

network

MPC

functional code

Figure 3: Component level view from a detailed user perspective.

MPC can be used as a front-end tool or - as is the case here - as a back-end tool. In the
latter MPC also needs to cope with the functional part of source code. For this end several
provisions were added in the form of installfiles after the publication of the MPC docu-
mentation [5]. The syntax of these additional installfiles are discussed in reference [6].

3.3 Getting started

It is assumed that an input process network description for SCATE has its own directory
within a directory called ’Generate’.

The common way of working is to feed commands to the SCATE tool via a file called
“Makefile-ScateSetup”. An initial version of this file can be generated using the com-
mand:

scate -setup

The “Makefile-ScateSetup” file can be viewed upon as the toplevel “Makefile” in a series
of related “Makefile”s, see figure 4. In each step a “Makefile-*” is generated that serves
as input for the next step. At the left hand side the commands are shown, while at the
right hand side the output files are shown. Makefiles between brackets are optional, those
will only be generated when the appropriate flags are set in the “Makefile-ScateSetup”.

At all times it is allowed to edit the toplevel “Makefile-ScateSetup”, e.g. due to changing
mapping requirements. By repeating the commands 2–4 shown in figure 4 all derived files
will be updated. In this way additional changes will ripple through all files involved.

Let us for the moment take a closer look at the toplevel file. The mandatory part of the
generated “Makefile-ScateSetup” looks like:

6

Makefile−ScateSetup

*.h
*.cc
*Main.cc
Imakefile
installfile.*.yapi

1) scate −setup

2) make −f Makefile−ScateSetup
Make.SrcVars
[Makefile−Import]
Makefile−Scate

installfile.yapi
installfile.yapi.*

3) make −f Makefile−Scate

*.MPC
*.net
symtab
*.map
toplevel.load
[Makefile−Test]
Make.MpcSetup
Makefile−Mpc

4) make −f Makefile−Mpc

Figure 4: Makefile hierarchy.

01 ##################################### Mandatory Part ###############
02
03 SCATE = scate
04
05 # The mpc executable
06 MPC = mpc
07
08 # The name of the mpc source library, for example the name of the

yapi system being transformed
09 SRCLIB = $(shell basename ‘pwd‘)
10
11 # The include paths without the -I prefix for the preprocessor only
12 # For example the paths to the api (yapi/ttl/..) include headers
13 # Use quotes, and an extra $ to preserve (environment) variables
14 CPP_INCLUDES = ’$$(YAPIROOT)/include’
15
16 # API specification
17 APISPECIFICATION = ’$$(TRIPLEMROOT)/share/api/yapi.dat’
18

7

Lines 01 up to 18 constitute the mandatory part. Here you configure the SCATE (line 03)
and MPC (line 06) versions you want to use. The default value listed here for SCATE
suffices unless one wants to do something special. In case MPC has been defined as an
environment variable line 06 should be commented out.

The variable SRCLIB in line 09 specifies from where you will run the tool MPC in a later
stage. Since SCATE will generate input for MPC in the current directory, the default in
line 09 suffices in most cases.

The variable CPP INCLUDES in line 14 specifies the include path(s) for the preprocessor.
The current default value in “Makefile-ScateSetup” is correct when you want to iterate
over YAPI sources (provided the environment variable YAPIROOT has been properly
defined). The quotes and the double ’$$’ ensure that the file “Makefile-Scate” that will be
generated in the next step contains $(YAPIROOT)/include as include path rather than its
evaluated version.

The variable APISPECIFICATION in line 17 specifies file(s) that define the API(’s)
needed during program transformation. When iterations over YAPI are performed, only
the YAPI API definition is required (can be found in the file ‘yapi.dat’ provided in the
(Triple-M release). There are several syntax styles possible here. One could specify the
absolute path or the relative path of the file(s) involved. However, we recommend a third
alternative, i.e., by defining the variable TRIPLEMROOT, which is the default.

The optional part of the generated “Makefile-ScateSetup” looks like:

8

01 ##################################### Optional Part ###############
02
03 # The parent of the mpc source library
04 # SRCROOT = ../../Design
05
06 # Mapping files
07 # MAPPINGFILES = mapping.dat transform.dat
08
09 # Extra flags
10 # EXTRA_FLAGS = -removeUnusedPorts
11
12 # The default Api to translate to,
13 # this must match the name of one of the Api definitions in the
14 spec files
15 # DEFAULT_OUTPUT_API = YAPI
16
17 # Extra -D flags, without the -D prefix
18 # EXTRA_DEFINES = VERBOSE
19
20 # Extra -I flags, without the -I prefix
21 # use quotes, and an extra $ to preserve (environment) variables
22 # EXTRA_INCLUDES = ’$$(VYAROOT)/include’ ’$$(CPFSPDROOT)/include’
23
24 # Full paths to extra libraries
25 # EXTRA_LIBRARIES = ’$$(VYALIBDIR)/libvya.a’ \
26 # ’$$(CPFSPDLIBDIR)/libcpfspd.a’
27
28 # Default minimum channel size
29 # DFLT_MIN_CHANNEL_SIZE = 1
30
31 # Default actual channel size
32 # DFLT_CHANNEL_SIZE = 2048
33
34 # Default maximum channel size
35 # DFLT_MAX_CHANNEL_SIZE = 2048
36
37 ##################################### Test Related Part ###########
38
39 # Original source root directory of application files (Makefile is
40 assumed to be present as well)
41 # ORIG_SRC_ROOT =
42
43 # Original source its executable name
44 # ORIG_EXE_NAME =
45
46 # Original source its executable arguments
47 # ORIG_EXE_ARGS =
48
49 # Name of output file
50 # NAME_OUTPUT_FILE =
51
52 #################### Nothing needs to be configured beyond this line

9

In principle one need not fill in anything here. However, due to an unsolved bug one needs
to edit line 15 to fix the default output API, whenever this API is different from YAPI. So
in case one iterates over TTL or translates to TTL one has to uncomment this line and fill
in TTL:

DEFAULT_OUTPUT_API = TTL

We now assume for the moment the user is satisfied with all the options provided to the
“Makefile-ScateSetup”. Hereafter, one can generate the file “Makefile-Scate” by issuing
the command (step 2 figure 4):

make -f Makefile-ScateSetup

As a result “Makefile-Scate” is generated. Execution of this “Makefile-Scate” will actu-
ally transform the input process network according to the transformations specified in the
“Makefile-ScateSetup” (step 3 figure 4).

make -f Makefile-Scate

During every run all the source code files are parsed by the SCATE tool. Special provi-
sions are made to garantee that the output sources made from this multi file AST can still
be compiled in the single file compilation domain. This is acheived by using a specific
order in which all the preprocessed files are read. This order is automatically determined
and written into a load order file at the end of the very first run of the SCATE tool on a
fresh process network. In a consecutive second run (does not require human intervention)
this load order is used to not miss any information that could otherwise be lacking. Thus,
in general one will experience two consecutive runs when starting with a fresh process
network. Hereafter, one run is sufficient as long as the load order file is not removed.

As a result of the previous command a set of intermediate files have been generated 4.
These files can be composed into a compilable process network by running the generated
“Makefile-Mpc” (step 4 figure 4).

make -f Makefile-Mpc

The process network output source code is generated in directory:

$SRCROOT/$SRCLIB/apiname/

by default SRCROOT will expand into ’../../Design’ (as defined in “Makefile-ScateSetup”),
SRCLIB is determined by the basename of the current directory, and ’apiname’ is cur-
rently either Yapi, TTL, or TTLC.

4The default behavior is that intermediate files are overwritten. In section 2 a flag is introduced that
could prevent this.

10

4 Example transformations

In this chapter a number of source code transformation examples are explained in detail.
If possible simple Producer-Consumer examples are used, see figure 5. By using small
examples all (relevant) source code can be incorporated into the text.

In the Producer-Consumer examples we have two processes, a producer that writes integer
values to a channel, and a consumer that reads the values from the channel. The number
of values written is initialized by the network process pc.

���
�

���
�

Producer Consumer

Channel

PC

Figure 5: Producer-Consumer.

The source code of the initial process networks for section 4.1 (TTL), section 4.2 (YAPI)
and section 4.3 (flattening) can be found in the release directory ‘˜/Triple-M/release/examples/pc/’.
Manually adjust (when needed) in each example the ‘Makeflags’ file to represent your lo-
cal settings.

In the first example (section 4.1) we demonstrate the effects of a source-to-source transfor-
mation on the file and directory structure, which allways occurs even without specifying
any particular transformation. This kind of restructuring of the source code is very usefull
since it has the advantage that the output conforms to one programming style. One could
now start collecting all the applications modeled as process networks and put them in one
central database to be used by the Philips community at large. Browsing through such a
database of applications that confirm to one programming style would make life easier.

In the second example (section 4.2) we demonstrate howto incorporate API transforma-
tions. The specification of a process network API is not hard coded in the tooling. Rather
it should be provided to the tooling as (programmable) input. This allows one - to a cer-
tain extend - to specify the syntax and semantics of the input API and the output API.
Currently the APIs of YAPI, TTL and TTLC can be captured.

In the third example (section 4.3) (partial) flattening of hierarchical process networks is
explained. Hierarchy is very well suited at functional level, however at the implemen-
tation level it can lead to too much overhead. Therefore this kind of transformation is
usefull when going from a functional model to an implemention model.

In the final example (section 4.4) we present a solution approach to deal with iterations
over a number of related models. In particular we focus on the problem of late changes
in the initial model that should ripple through all derived models. An generic solution

11

approach is presented that can be used in all cases where one has to deal with a mixture
of generated source code (or copied source code) and manually modified source code.

4.1 File and directory restructuring

The example described here requires a TTL runtime environment installation. Un-
fortunately, at the time of writing this is only available to the Philips community. As
an alternative one can use the source code of ‘˜/Triple-M/release/pc/Generate/yapi/’
as the initial process network. These sources only require a YAPI runtime environ-
ment. The text below is not completely useless since the procedure remains the same,
and only minor changes in the Makefiles are required. However, it is probably best
to start with example 4.2 first. That example describes howto handle YAPI input
sources.

Below the Producer-Consumer example is explained in a top-down way. The source code
of the initial process network can be found in ‘˜/Triple-M/release/pc/Generate/ttl/’. We
start at the main program in which the process network is created and started. Next, we
describe the process network, followed by the producer process and the consumer process.

In this example we focus on a TTL to TTL transformation without specifying any func-
tional or structural transformation. Even in such a case, file and directory restructuring is
enforced to the output files. Moreover, macros are expanded and at the moment (unfortu-
nately) comments are removed from the source code.

First, the input process network source code is introduced. After this the makefile hierar-
chy of the toolflow is explained. We will see that only one of these makefiles is used to
configure and steer the desired transformations. Finally, after transformation the output
source code are presented.

The Producer-Consumer process network is represented by the class PC. The declaration
of this class can be found in the header file ‘pc.h’:

12

01 #include "process.h"
02 #include "network.h"
03 #include "cb_in_port.h"
04 #include "cb_out_port.h"
05 #include "channel.h"
06
07 #include "producer.h"
08 #include "consumer.h"
09
10 class PC : public Network
11 {
12 public:
13 PC(const Id& n, int length);
14
15 const char* type() const;
16
17 private:
18 Channel<int> a;
19
20 Producer p;
21 Consumer c;
22 };

The implementation can be found in the source file ‘pc.cc’:

01 #include "pc.h"
02
03 PC::PC(const Id& n, int length) :
04 Network(n),
05 a(id("a"), 256),
06 p(id("p"), a, length),
07 c(id("c"), a)
08 { }
09
10 const char* PC::type() const
11 {
12 return "PC";
13 }
14
15 int main(int argc, char *argv[])
16 {
17 PC pc(id("pc"), 1000);
18 run(pc);
19 printf("%s","The end.");
20
21 return 0;
22 }

The producer process is represented by the class Producer. This class is declared in the
header file ‘producer.h’:

13

01 #ifndef PRODUCER_H
02 #define PRODUCER_H
03
04 #include "process.h"
05 #include "cb_out_port.h"
06
07 using namespace ttl;
08
09 class Producer : public Process
10 {
11 public:
12 Producer(const Id& n, CbOut<int>& o, int length);
13
14 const char* type() const;
15 void main();
16
17 private:
18 Port< CbOut<int> > p;
19 int n;
20 };
21
22 #endif

The implementation can be found in the source file ‘producer.cc’:

01 #include "producer.h"
02
03 Producer::Producer(const Id& n, CbOut<int>& o, int length) :
04 Process(n),
05 p(id("p"), o),
06 n(length)
07 { }
08
09 const char* Producer::type() const
10 {
11 return "Producer";
12 }
13
14 void Producer::main()
15 {
16 write(p, n);
17
18 for (int i=0; i<n; i++)
19 {
20 write(p, i);
21 }
22 }

The consumer process is represented by the class Consumer. This class is declared in the
header file ‘consumer.h’:

14

01 #ifndef CONSUMER_H
02 #define CONSUMER_H
03
04 #include "process.h"
05 #include "cb_in_port.h"
06
07 using namespace ttl;
08
09 class Consumer : public Process
10 {
11 public:
12 Consumer(const Id& n, CbIn<int>& i);
13
14 const char* type() const;
15 void main();
16
17 private:
18 Port< CbIn<int> > p;
19 };
20
21 #endif

The implementation can be found in the source file ‘consumer.cc’:

15

01 #include "consumer.h"
02 #include "assert.h"
03 #include <iostream>
04
05 using namespace std;
06
07 Consumer::Consumer(const Id& n, CbIn<int>& i) :
08 Process(n),
09 p(id("p"), i)
10 { }
11
12 const char* Consumer::type() const
13 {
14 return "Consumer";
15 }
16
17 void Consumer::main()
18 {
19 int n;
20 read(p, n);
21
22 for (int i=0; i<n; i++)
23 {
24 int j;
25 read(p, j);
26 assert(i==j);
27 printf("Value i=%d, j=%d\n", i, j);
28 }
29 }

In line 27 of ‘consumer.cc’ we use the C programming style rather than the C++ program-
ming style to print the values of the integer variables. This choice has been a deliberate
choice, since the SCATE tool does not support transformations from IO stream to printf().
Such kind of transformations would be needed when transforming from the C++ language
to the C language. Taking small things like this into account when writing an application
models makes it more reusable.

Makefile-ScateSetup As explained above the common way of working (section 3.3) is
to feed commands to the SCATE tool via a file called “Makefile-ScateSetup”. An initial
version of this file can be generated using the command:

scate -setup

Let us for the moment take a closer look at the toplevel file. Edit the mandatory part of
the generated “Makefile-ScateSetup” until it resembles:

16

01 ##################################### Mandatory Part ###############
02
03 SCATE = scate
04
05 # The mpc executable
06 # MPC = mpc
07
08 # The name of the mpc source library, for example the name of the

yapi system being transformed
09 SRCLIB = $(shell basename ‘pwd‘)
10
11 # The include paths without the -I prefix for the preprocessor only
12 # For example the paths to the api (yapi/ttl/..) include headers
13 # Use quotes, and an extra $ to preserve (environment) variables
14 CPP_INCLUDES = ’$$(TTLROOT)/include/’
15
16 # API specification
17 APISPECIFICATION = ’$$(TRIPLEMROOT)/share/api/ttlc++.dat’
18

To recapitulate lines 01 up to 18 constitute the mandatory part. Here you configure the
SCATE (line 03) and MPC (line 06) versions you want to use. Here we assume MPC has
been defined as an environment variable line 06 therefore this line is commented out.

The variable CPP INCLUDES in line 14 specifies the include path(s) for the preprocessor.
We assume the environment variable TTLROOT has been defined.

The variable APISPECIFICATION in line 17 specifies files that define the API’s needed
during program transformation. When iterations over TTL C++ are performed, only the
TTL API definition is required (can be found in the file ‘ttlc++.dat’ provided in the (Triple-
M release). At this point the reader is encouraged to look into the APISPECIFICATION
file and look for the definitions of channels, interfaces, and functions. The syntax used in
this file is quite straightforward and intuative to understand.

In principle one need not fill in anything in the optional part since in the example at
hand no transformations are required. However, due to an unsolved bug one needs to edit
line 15 of the optional part to fix the default output API, whenever this API is different
from YAPI. So in our case iterating over TTL we have to fill in::

15 DEFAULT_OUTPUT_API = TTL

We now assume for the moment the user is satisfied with all the options provided to the
“Makefile-ScateSetup”. Hereafter, one can generate the file “Makefile-Scate” by issuing
the command (step 2 figure 4):

make -f Makefile-ScateSetup

As a result “Makefile-Scate” is generated. Execution of this “Makefile-Scate” will actu-
ally transform the input process network according to the transformations specified (none
in our case) in the “Makefile-ScateSetup” (step 3 figure 4).

17

make -f Makefile-Scate

As a result of the previous command a set of intermediate files have been generated.
These files can be composed into a compilable process network by running the generated
“Makefile-Mpc” (step 4 figure 4).

make -f Makefile-Mpc

The process network output source code is generated in directory:

../../Design

The output sources are included in appendix A.1.

From comparison between the input sources (shown above) and the output sources (in
appendix A.1) one can tell that the file and directory structure of the process network has
been modified. In the transformed process network there are two source files (‘*Main.cc’
and ‘*.cc’). Moreover, the original (input) process network files were all collected in
one directory. While the transformed process network uses a seperate directory for each
process and each network.

This file and directory restructuring occurs irrespective of other transformations. The
main advantage of this is that one programming style is enforced for all process networks
in an automated manner.

Next we will compile the transformed process network. But, let us first check if the correct
functional simulation environment is used:

cd ../../Design/ttl/TTL/

The correct value of the variables SRC RO OT and SRC L I B can be found in the “Makefile-
ScateSetup”.

Edit ‘Config.h’ when necessary5:

5When ED&T version 1.3 of YAPI is used, one needs to set the include path (line 11) to ‘YAPI INC =
$(YAPIROOT)/include/yapi‘.

18

01 XCOMM NOTE : This is an automatically generated overwrite protected
file,

02 XCOMM ==== It is OK TO EDIT this file
03 XCOMM
04 XCOMM Config.h, generated by Mpc for user Triple-M
05 XCOMM
06 XCOMM Creation Date : Wed May 11 11:27:32 2005
07 XCOMM
08
09 #include "../../Config.h"
10
11 TTL_INC = $(TTLROOT)/include
12 TTL_LIB = $(TTLROOT)/lib
13
14 TTL_INC_ROOT = $(TTL_SYSTEM_ROOT)/TTL
15 TTL_LIB_ROOT = $(TTL_INC_ROOT)

Due to another unsolved bug one needs to comment out manually the line “using names-
pace ttl;” in the generated output files “Consumer.h” line 14 and “Producer.h” line 14.

After this one can compile the application:

../../Compile

If all went fine the result can be executed:

cd TestBench/toplevelname/;
./executablename [inputfiles]

in our case:

cd TestBench/PC/;
./PC

4.2 Api transformation

The example shown here only requires a TTL runtime environment installation to
run the final output code. Unfortunately, at the time of writing this is only available
to the Philips community.

In this section we demonstrate the transformation of one API into another API. Similar
to section 4.1 we use a Producer-Consumer process network example. Only this time we
use the YAPI syntax as a starting point. The process network after transformation will be
in TTL C++ syntax.

A YAPI to TTL transformation is just one demonstration of this kind of transformation.
Other examples of why one could want to modify the syntax of an API are:

19

• Keeping up with changes in the syntax of an API (convert legacy code).

• Intentionally make changes in the syntax of an API (for efficiency reasons or exten-
sions to the API).

• Conversion from C++ to C6.

An example triggered by efficiency reasons is shown in section 4.2.1, where the definition
of a read function is changed.

The source code of the initial process network can be found in ‘˜/Triple-M/release/pc/Generate/yapi/’.
The Producer-Consumer process network is represented by the class PC. The declaration
of this class can be found in the header file ‘pc.h’:

01 #include "yapi.h"
02
03 #include "producer.h"
04 #include "consumer.h"
05
06 class PC : public ProcessNetwork
07 {
08 public:
09 PC(Id n, int length);
10
11 const char* type() const;
12
13 private:
14 Fifo<int> fifo;
15
16 Producer p;
17 Consumer c;
18 };

The implementation can be found in the source file ‘pc.cc’:

6Transformations from the C language to C++ are and will not be supported

20

01 #include "pc.h"
02
03 PC::PC(Id n, int length) :
04 ProcessNetwork(n),
05 fifo(id("fifo")),
06 p(id("p"), fifo, length),
07 c(id("c"), fifo)
08 { }
09
10 const char* PC::type() const
11 {
12 return "PC";
13 }
14
15 int main(int argc, char *argv[])
16 {
17 RTE rte;
18
19 PC pc(id("pc"), 1000);
20
21 rte.start(pc);
22 printCommunicationWorkload(pc);
23 printComputationWorkload(pc);
24 printDotty(pc);
25
26 return 0;
27 }

The producer process is represented by the class Producer. This class is declared in the
header file ‘producer.h’:

01 #ifndef PRODUCER_H
02 #define PRODUCER_H
03
04 #include "yapi.h"
05
06 class Producer : public Process
07 {
08 public:
09 Producer(Id n, Out<int>& o, int length);
10
11 const char* type() const;
12 void main();
13
14 private:
15 OutPort<int> p;
16 int n;
17 };
18
19 #endif

21

The implementation can be found in the source file ‘producer.cc’:

01 #include "producer.h"
02
03 Producer::Producer(Id n, Out<int>& o, int length) :
04 Process(n),
05 p(id("p"), o),
06 n(length)
07 { }
08
09 const char* Producer::type() const
10 {
11 return "Producer";
12 }
13
14 void Producer::main()
15 {
16 write(p, n);
17
18 for (int i=0; i<n; i++)
19 {
20 write(p, i);
21 }
22 }

The consumer process is represented by the class Consumer. This class is declared in the
header file ‘consumer.h’:

01 #ifndef CONSUMER_H
02 #define CONSUMER_H
03
04 #include "yapi.h"
05
06 class Consumer : public Process
07 {
08 public:
09 Consumer(Id n, In<int>& i);
10
11 const char* type() const;
12 void main();
13
14 private:
15 InPort<int> p;
16 };
17
18 #endif

The implementation can be found in the source file ‘consumer.cc’:

22

01 #include "consumer.h"
02 #include <iostream>
03
04 using namespace std;
05
06 Consumer::Consumer(Id n, In<int>& i) :
07 Process(n),
08 p(id("in"), i)
09 { }
10
11 const char* Consumer::type() const
12 {
13 return "Consumer";
14 }
15
16 void Consumer::main()
17 {
18 int n;
19 read(p, n);
20
21 for (int i=0; i<n; i++)
22 {
23 int j;
24 read(p, j);
25 assert(i==j);
26 printf("Value i=%d, j=%d\n", i, j);
27 }
28 }

Makefile-ScateSetup As explained above (section 3.3) an initial version of the file
“Makefile-ScateSetup” can be generated using the command:

scate -setup

Given this process network in YAPI syntax we will now translate it into TTL syntax. The
first step is to create an initial version of “Makefile-ScateSetup” as depicted in step 1
figure 4 and edit its content, until its resembles:

23

01 ##################################### Mandatory Part #############
02
03 SCATE = scate
04
05 # The mpc executable
06 #MPC = mpc
07
08 # The name of the mpc source library, for example the name of the

yapi system being transformed
09 SRCLIB = $(shell basename ‘pwd‘)
10
11 # The include paths without the -I prefix for the preprocessor only
12 # For example the paths to the api (yapi/ttl/..) include headers
13 # Use quotes, and an extra $ to preserve (environment) variables
14 CPP_INCLUDES = ’$$(YAPIROOT)/include’
15
16 # API specification
17 APISPECIFICATION = ’$$(TRIPLEMROOT)/share/api/yapi.dat’ \
18 ’$$(TRIPLEMROOT)/share/api/ttlc++.dat’

We have commented out line 06, assuming MPC has been defined as a environment vari-
able. If this is not the case fill in the desired executable name.

The variable CPP INCLUDES in line 14 specifies the include paths for the preprocessor.
In this example CPP INCLUDES should be set to ‘$$(YAPIROOT)/include/’ including
the quotes7.

The variable APISPECIFICATION in line 17 specifies those files that define the API’s
needed during program transformation. When translating from YAPI to TTL C++, both
API definitions are required (‘yapi.dat’ and ‘ttlc++.dat’). You can specify the absolute
path or the relative path. We recommend a third alternative using the environment variable
TRIPLEMROOT as shown.

This is enough info for the moment. Continue with step 2 and 3 of figure 4. As indicated
in the figure ‘*.map’ files will be created. For translation to TTL C++ you need to copy
the toplevel map file PC.map into PC.ttl. The SCATE tool regenerates the ‘*.map’ files
whenever you run the tool. So you need to make a copy to avoid losing your changes
during an iteration.

The content of the file PC.ttl should be changed to resembles this:

7Unless the ED&T release 1.3 of YAPI is used. In this case you should set CPP INCLUDES to
‘$$(YAPIROOT)/include/yapi/’.

24

01 MAPPING PC
02 {
03 TRANSPORT
04 {
05 mem_fifo["256"]
06 {
07 TTL::Channel<int>
08 }
09 }
10 NET
11 {
12 fifo -> mem_fifo
13 }
14 MAPPING Consumer : c
15 {
16 }
17 MAPPING Producer : p
18 {
19 }
20 }

This MAPPING specification binds transformations to YAPI / TTL design entities. As
shown these specifications can be nested. The TRANSPORT section defines synchronized
token containers. In practice such a container is defined by selecting a YAPI FIFO or a
TTL CB channel 8.

The value 256 (line 05) between brackets specifies the size of the channel in number of
tokens. So in this case, the channel can contain 256 integers.

The prefix ‘TTL::’ (line 07) indicates - similar to a namespace in the C++ programming
language - in which API the Channel definition can be found (see API definition file
‘ttlc++.dat’). If you only use one API definition in your “Makefile-ScateSetup” or if
Channel is uniquely defined within the APIs used, then the prefix is not needed.

The NET section describes that FIFO instance fifo will be mapped onto TRANSPORT
instance ‘mem fifo’.

Subsequently we have to instruct SCATE via the “Makefile-ScateSetup” to use the map-
ping file:

MAPPINGFILES = PC.ttl

Moreover we can reuse the symbol table 9 that has been built in the second run by copying
the file symtab into symtab.this (the symtab file is overwritten each run). To speed up
parsing we can now add the following information to the “Makefile-ScateSetup” file:

8See reference [6] for more details.
9The compiler uses a symbol table to keep track of the user-defined symbols in the program.

25

EXTRA_FLAGS = -symtab symtab.this

To mimic the YAPI equivalent of the printDotty(pc) toplevel main function one can add
the flag ‘-dottyView’ to the “Makefile-ScateSetup”:

EXTRA_FLAGS = -symtab symtab.this \
-dottyView

This will produce a graphical view on the process network after transformation in ‘dotty’
format (file ‘dottyview.dot’). This graphical view is created after static analysis of the
source code, i.e., it does not require running the process network executable. Moreover it
is independent of the API that is used.

The dotty format is a textual format that can be used to view graphs. The program dotty 10

can be used to view the graph via the X environment, or the program dot can be used to
convert the graph into e.g postscript format, using the following command:

dot -Tps dottyview.dot > dottyview.ps

We now return to step 2 and 3 of figure 4 and recreate a new “Makefile-Scate” file that will
transform the process network as instructed. If all went well the output text will clearly
state that the YAPI processes have been recognized and translated to TTL processes:

========================== Transform Api Recognition ============
- PROCESS Consumer has been transformed from YAPI to TTL
- NETWORK PC has been transformed from YAPI to TTL
- PROCESS Producer has been transformed from YAPI to TTL
===

At this point in the flow SCATE has produced all the required input files for MPC, see
step 3 figure 2. Next, we combine them into a TTL C++ process network using MPC.
This is done in step 4 of figure 4.

The output files are not shown here explicitly, but they should closely resemble the files
shown in appendix A.1. However, since we performed an API to API translation, the calls
with which the process network is created and started could be different for the two APIs
involved. These kind of transformations are not supported by the SCATE tool. Edit the
toplevel main function manually (file ‘main.cc’) by inserting lines 17–19 and commenting
out line 20–24 as shown:

10Note, dotty is available for users at the Nat.Lab. through the cadappl tree (cadenv graphviz).

26

01 // WARNING : This file has been automatically generated,
02 // ======= DO NOT EDIT unless you know what you are doing...
03 //
04 // PCMain.cc, generated by Mpc for user Triple-M
05 //
06 // Creation Date : Fri May 13 14:33:29 2005
07 //
08
09 #include "PC.h"
10
11 const char* PC::type() const
12 {
13 return "PC";
14 }
15 int main(int argc, char* argv[])
16 {
17 PC pc(id("pc"), 1000);
18
19 run(pc);
20 // RTE rte;
21 // rte.start(pc);
22 // printCommunicationWorkload(pc);
23 // printComputationWorkload(pc);
24 // printDotty(pc);
25 return 0;
26 }

In order to prevent that these manual changes will be lost during another run of the tooling
add the flag ’-ignoreMain’ to make the toplevel main function overwrite protected:

EXTRA_FLAGS = -symtab symtab.this \
-dottyView \
-ignoreMain

There is another more generic and powerful - but also more complex - manner to prevent
the loss of manual changes, see section 4.4.

The TTL process network is now ready to be compiled and executed:

cd ../../Design/ttl/TTL/;

Edit ‘Config.h’ when necessary.

../../Compile

27

4.2.1 Api definition

The example shown here requires a TTL runtime environment installation. Un-
fortunately, at the time of writing this is only available to the Philips community.
Nevertheless, the example shown indicates the advantage of having a configurable
API, which is also the case for a YAPI API.

In this section we take a closer look at the API definition language. This language in-
structs SCATE about the channels and interfaces that are available, and which services are
provided by the interfaces in the form of functions.

As an illustrating example we will change the syntax of the read function provided by
TTL. Copy the existing ‘ttlc++.dat’ into a new file called ‘new ttlc++.dat’. Edit this file
by changing the API name into ’NEW TTL’, and adopt the definition of the read function
from:

FUNCTION read(PORT, VALUE)
{

IN:ENTRY
IN:DATA
IN:LEAVE

}

into:

FUNCTION read(PORT) RETURNS &VALUE
{

IN:ENTRY
IN:DATA
IN:LEAVE

}

Copy the mapping file PC.ttl created in the previous section into PC.new ttl, and modify:

TTL::Channel<int>

into:

NEW_TTL::Channel<int>

28

Makefile-ScateSetup Edit “Makefile-ScateSetup” and change PC.ttl into PC.new ttl.

Now rerun step 2–4 of figure 4. After this all read functions in the output ‘NEW TTL’
source code are transformed. Unfortunately we do not have a runtime environment to
execute the final code, nevertheless this example is shown here as an illustration.

4.3 Network transformations

The example shown here requires a TTL runtime environment installation. Unfor-
tunately, at the time of writing this is only available to the Philips community. As an
alternative one can use the source code of ‘˜/Triple-M/release/jpeg/Generate/yapi/’
as the initial process network.

In this section network transformations are introduced and explained. For this purpose the
Producer-Consumer example is slightly modified into a process network with (artificial)
hierarchy. The consumer process is embedded into a consumer network cn, see figure 6.
The initial souce code can be found in directory ‘˜/Triple-M/release/pc/Generate/flatten/’.

���
�

���
�

���
���������

Producer

Channel

PC

Consumer

CN

Figure 6: Producer-Consumer with hierarchy.

The consumer network is represented by the class CN. The declaration of this class can
be found in the header file ‘cn.h’:

29

#include "process.h"
#include "network.h"
#include "cb_in_port.h"
#include "cb_out_port.h"
#include "channel.h"

#include "consumer.h"

class CN : public Network
{
public:

// constructor
CN(const Id& n,

CbIn<int>& CNin);

const char* type() const;

private:
// input ports
NetworkPort< CbIn<int> > CNinP;

// channels

//processes and networks
Consumer c;

};

The implementation can be found in the source file ‘cn.cc’:

#include "cn.h"

CN::CN(const Id& n,
CbIn<int>& CNin) :
Network(n),

// ports
CNinP(id("CNinP"), CNin),

// processes and networks
c
(

id("c"),
CNinP

)
{ }

const char* CN::type() const
{

return "CN";
}

The introduction of the network described above lead to changes in the toplevel network

30

file ‘pc.h’:

#include "process.h"
#include "network.h"
#include "cb_in_port.h"
#include "cb_out_port.h"
#include "channel.h"

#include "producer.h"
#include "cn.h"

class PC : public Network
{
public:

PC(const Id& n, int length);

const char* type() const;

private:
Channel<int> a;

Producer p;
CN cn;

};

Likewise also some changes in the toplevel implementation network file ‘pc.cc’:

#include "pc.h"

PC::PC(const Id& n, int length) :
Network(n),
a(id("a"), 256),
p(id("p"), a, length),
cn(id("cn"), a)

{ }

const char* PC::type() const
{

return "PC";
}

int main(int argc, char *argv[])
{

PC pc(id("pc"), 1000);
run(pc);
printf("%s","The end.");

return 0;
}

31

Generate a fresh “Makefile-ScateSetup” as described several times above, step 1 figure 4.
Besides the usual configuration of this file - MPC, CPP INCLUDES, and APISPECIFI-
CATION (see section 3.3) - one may appreciate the current example more by generating
a dotty file before the network transformation (see section 4.2)11.

A quick view on the dotty output reveals that the network class CN has been added to the
process network structure as also shown in figure 6.

4.3.1 Mapping file

Flattening of a process network can be described in a mapping file:

MAPPING *
{

FLATTEN
}

The precise syntax of the MAPPING specification is described in detail in report [6]. In
words, “what is specified here is that the structural transformation statement FLATTEN
will be applied to each unit”. Flattening of a process network is a generic transformation
for which the mapping file is provided by the Triple-M release (file ‘flatten.dat’).

Add the mapping file that flattens the process network to “Makefile-ScateSetup”:

MAPPINGFILES = ’$$(TRIPLEMROOT)/share/mapping/flatten.dat’

Rerun the SCATE tooling as usual, and generate output sources using MPC. The output
sources after transformation can be found in appendix A.2. Look again at the graphical
view (file ‘dottyview.dot’) after transformation, and confirm that the network CN has
indeed been removed from the output sources.

4.4 Consistency between various models

Keeping iterations over a number of related source code models consistent is a real chal-
lenge. This problem would be less difficult when all design decisions could be automated
from start to finish. Currently this is not possible - and most likely never will be - since
many design decisions are based on some creative process that is hard / impossible to
automate.

The second best thing one can do is to help the user as much as possible in keeping the
various models consistent. For example consider what happens when after creating a
number of derived process network models a change is made to the initial model. These

11Note, in order to create ‘dottyview.dot’ there is no need to run MPC.

32

changes should then ripple through all the derived models. The requirements that are
defined to help the user are the following:

• Automatically patch when possible.

• Never loose information.

• Provide a stepwise approach.

Some changes in the source code are too disruptive to be handled by the solution approach
chosen. For those cases there is no other option than to continue manually. While still
obeying the requirement not to loose any information. Currently there is little experience
where exactly the borderline is of what type of changes can and what type of changes
cannot be handled in practice.

4.4.1 Source code patching

The example described here requires a TTL runtime environment installation. Un-
fortunately, at the time of writing this is only available to the Philips community. As
an alternative we stated in example 4.1 to use the source code of ‘˜/Triple-M/release/pc/Generate/yapi/’
as the initial process network. These sources only require a YAPI runtime environ-
ment. The text below is not completely useless since the procedure remains the same,
and only minor changes in the Makefiles are required.

The basic idea of a patch mechanism is to add or remove source code based on a context
difference between a copy of the original file and the latest version of this file. Each hunk
of the patch can be applied without any problem to a file that is a copy of the original
file. In some cases one can even apply these patches without any problems to a modified
version of a copy of the original file. This holds as long as the context of where patches
occur can still be recognized. If the tool ‘patch’ cannot find a place to install a hunk of the
patch, it puts the hunk out to a reject file, which normally is the name of the output file
plus a .rej suffix. The line numbers on the hunks in the reject file may be different than in
the patch file: they reflect the approximate location patch thinks the failed hunks belong
in the new file rather than the old one.

These ideas have been implemented and extended in the following manner that allows
for automatic generation of patches as well. Suppose a (sub)set of files in a directory
(called ‘patchDir’) have the following properties. They start from an initial version that
is from then on solely modified via the patch mechanism explained above. In order to put
the idea of automatic generation of patches into practice one needs a separate directory
(called ‘.cvsPatchDir’) in which copies of the initial versions are stored under version
management. New versions of these files are simply copied or generated into this ‘.cvs-
PatchDir’, thereby overwriting the old versions. Version management can now help to
create a patch by running a context diff w.r.t. the versions stored in the repository. This
patch can now be used to automatically remove or add code in the ‘patchDir’ directory.

33

After this has been done the ‘.cvsPatchDir’ directory should be checked in into the repos-
itory, since they now form a new frame of reference for the next iteration. At this point
one may wonder what the use of the patch mechanism is since one could simply overwrite
the files in the ‘patchDir’. The neat thing is that with the extra machinery described - that
can be automated with the help of scripts - it also allows for manual editing of the exact
same files located in the ‘patchDir’.

The approach described in the previous paragraph to source code patching results in a
manageable system in which a (sub)set of files may contain a mixture between (automat-
ically) generated source code and handwritten source code 12. All requirements formu-
lated are fulfilled to manage consistency between various related source level models and
iterations over them, i.e. output models of one transformation can be used as input for
another.

For a user working with the SCATE tool, source code patching as described can be useful
in two ways:

1 Patch input application code.

2 Patch generated SCATE output code to:

– manually correct bugs in the transformed source code.

– edit source code for transformations that have not been implemented yet.

– edit source code fragments that are not be supported (e.g. stop and start func-
tions in the toplevel main function, see section 4.2).

Source code patching as described in item 1 enables one to perform iterations over various
related versions of source level models without loosing their dependencies. A change in
any of the intermediate models can now ripple through all models that depend on it,
assuming one sequentially transforms each of those models. With source code patching
as described in item 2 in place there is no or little need to edit the transformed process
network as generated by MPC 13. One could even consider not putting the MPC generated
output sources under version management.

In the following we demonstrate howto setup source code patching as described in item 1
and 2 for process network transformations. Even though both items are discussed in one
example they can be used independently.

We reuse the source code from the ’ttl’ example (section 4.1) for the initial setup. Shadow
directories are created, sources are put under version management, and scripts are ex-
plained to enable patching. As an example we will simulate a late change in the tokensize
- from int to short - of the channel in the initial process network. Thereafter additional
steps are introduced that allow automated testing.

We assume in the following a cvs repository is available 14. For those who do not have a
repository at hand can create one on their private disk:

12Note, it is also allowed to manually change generated source code.
13Assuming there are no bugs in MPC.
14For details we refer to the cvs manual [9].

34

cvs -d ˜/cvsroot init

This repository will be used throughout the example presented below.

Manual setup Create a new directory - within the ’Generate’ directory - called ’patch’
and enter this directory. Create a project in the repository of cvs and update to this project:

export CVSROOT=˜/cvsroot
cvs import -m ’Created patch project.’ patch patch start
cd ..
rmdir patch
cvs co patch
cd patch

Run the following command in the ’patch’ directory 15:

cvsCreateApplPatchDir ../ttl/

The argument of the script should be an absolute or relative path to the process network
that is transformed. The script creates, in the current directory, a hidden directory ‘.cvs-
ApplPatchDir’, and copies the input application sources in there 16.

One should now manually copy those sources in the current directory:

cp .cvsApplPatchDir/* .

This suffices for the patch mechanism of the input application code. We now continue
with the patch mechanism of the scate output sources.

Create a fresh toplevel ‘Makefile’, see step 1 of figure 4:

scate -setup

Create the file “Makefile-ScateSetup”:

make -f Makefile-ScateSetup

Edit the generated “Makefile-ScateSetup” and define MPC, CPP INCLUDES as described
in section 4.1. Create intermediate files:

make -f Makefile-Scate

Run the script:

15Note, with slight modification one could also apply the procedure described here to an already existing
transformation. This is left for the reader as an exercise.

16‘*.cc’, ‘*.c’ and ‘*.h’, with the exception of ‘*Options.h’ and ‘Config.h’

35

cvsCreateScateOutputPatchDir

This creates a ‘.cvsScateOutputPatchDir’ and copies the intermediate sources in there.

Edit the generated “Makefile-ScateSetup” and add the flag:

EXTRA_FLAG = -cvsOutputPatch

This treats intermediate files produced by SCATE in the current directory as overwrite
protected 17, while still generating (and overwriting) code in the shadow directory ‘.cvsS-
cateOutputPatchDir’. One may now add other transformations as desired.

Recreate intermediate files in the hidden directory, see step 2–3 of figure 4:

make -f Makefile-ScateSetup
make -f Makefile-Scate

Look at the output to confirm that files are created in the shadow directories and not
directly in the current directory.

Add the directories ‘.cvsScateOutputPatchDir’ and ‘.cvsApplPatchDir’ plus all files to
your project in the repository:

cvs add *
cvs add .cvsScateOutputPatchDir
cd .cvsScateOutputPatchDir
cvs add *
cd ..
cvs add .cvsApplPatchDir
cd .cvsApplPatchDir
cvs add *
cd ..
cvs ci -m ’Add initial files and directories to project patch.’

When multiple developers are working on the same sources one should advert to the use
of branches [9]. This prevents content interference in the hidden directories ‘.cvsSca-
teOutputPatchDir’ and ‘.cvsCiApplPatch’. Each developer is then able to generate code
into these hidden directories, and to maintain it independently using version management.
This is how to create a branch with name ‘tagname’ - suggestion: use for this a numbered
three letter acronym of your name -:

cvs tag -b tagname ‘find . -type d -name ’.cvsScateOutputPatchDir’‘

When these commands are issued all ‘.cvsScateOutputPatchDir’ directories are put on a
private branch. Similarly:

cvs tag -b tagname ‘find . -type d -name ’.cvsApplPatchDir’‘

17‘installfile.yapi.*’, ‘*.net’, and ‘*.MPC’.

36

Then update to this branch:

cvs update -r tagname

Continue as usual by adding additional transformations when appropriate. A thing or
two have changed now, i.e., one should patch the input application code whenever it has
changed before a new iteration is started. Application code can be patched using:

cvsApplPatch

Likewise, one should patch intermediate output code of scate right after it has been gen-
erated in every iteration cycle using:

cvsScateOutputPatch

Note, with this mechanism is place one is allowed - at any time - to edit the intermediate
sources as required. After patches have been applied on needs to check the new files into
the repository:

cvsCiScateOutputPatch
cvsCiApplPatch

We are now set to apply source code patching on the example at hand. Suppose the type
of the channel in the example at hand has been changed by the application developer from
int to short for efficiency reasons. Such changes to the input code can now be handled
without problem. For this exercise the transformation to short has been prepared and can
be imported as follows:

cvsCreateApplPatchDir ../short/

This overwrites the files in the ’.cvsApplPatchDir’.

Before starting a second iteration over the sources one needs to patch the input code for
scate in the current directory as stated above:

cvsApplPatch

Create new intermediate output as usual:

make -f Makefile-ScateSetup
make -f Makefile-Scate

Finally, patch the output produced by scate:

cvsScateOutputPatch

37

Before checking in it is instructive to look at the differences w.r.t. repository:

cvsDiffScateOutputPatch
cvsDiffApplPatch

Before the next iteration is started one should check in the current set of files as a new
frame of reference:

cvsCiScateOutputPatch
cvsCiApplPatch

As an assignment one could now edit the top level main function as described in sec-
tion 4.2, without using the ‘-ignoreMain’ flag.

Automate testing The procedure described in the previous section can be extended and
automated such that a complete test flow is obtained including the source code patching
mechanism as described above. The result of such a test is summarized in a HTML file.
One scenario could be to periodically run such automated test for error detection, and
to send the resulting file to all members of the team involved. Another complementary
scenario could be to use the patching mechanism to keep all related models upto date.

Edit the “Makefile-ScateSetup” in the previous ‘patch’ example and add two flags:

EXTRA_FLAG = -cvsOutputPatch \
-mkImportMakefile \
-mkTestMakefile

The ‘-cvsOutputPatch’ has already been described, see section 4.4.1. The ‘-mkImportMakefile’
and the ‘-mkTestMakefile’ flags instruct SCATE to generate a “Makefile-Import” and a
“Makefile-Test”, respectively.

Furthermore, fill in the test related part of the “Makefile-ScateSetup” file as much as
possible. At least fill in the directory where the “Makefile” of the original application can
be found, and the name of the executable that is created by this “Makefile”:

38

##################################### Test Related Part #

Original source root directory of application files
(Makefile is assumed to be present as well)
ORIG_SRC_ROOT = ’../short’

Original source its executable name
ORIG_EXE_NAME = pc

Original source its executable arguments
ORIG_EXE_ARGS =

Name of output file
NAME_OUTPUT_FILE =

Run:

make -f Makefile-ScateSetup

Besides a “Makefile-Scate” file this now also generates a “Makefile-Import” file, see step
2 of figure 4.

Edit “Makefile-Import” such that the directory(ies) of the (original) application sources
is / are known. In our case this information can be extracted from the ‘Test Related Part‘
of the toplevel “Makefile-ScateSetup”. Things could be more tricky when the original
sources are spread over multiple directories, when the case adjust the “Makefile-Import”
accordingly. One could now run the command:

make -f Makefile-Import

This will execute script ‘cvsCreateApplPatchDir’ which - if it does not exist - creates
‘.cvsApplPatchDir’, and imports (copies) the input application sources. It also executes
the script called ‘cvsApplPatch’. This patches the input code when it has been changed
w.r.t. repository. When CVS related errors occur at this stage one should check whether
CVSROOT has been set in the current shell. Those errors should then disappear in a next
iteration. In a moment we will see that it is not needed to call ‘make -f Makefile-Import’
explicitly from the command line as shown. Rather this call will be done by the script
scate test.

Run SCATE with the all its arguments:

make -f Makefile-Scate

This creates intermediate files, and a “Makefile-Test” file, see step 3 of figure 4. When the
test related part of the“Makefile-ScateSetup” is filled in appropriately one generally need
not edit this file anymore. Otherwise make the necessary corrections in the “Makefile-
Test” or alternative delete this file 18 and correct “Makefile-ScateSetup” and continue
from there as usual.

18“Makefile-Test” is treated as overwrite protected by SCATE.

39

We are all set now. In order to further automate testing a script is made available -
called scate test - that recursively runs over a directory structure in search of one or
more Makefile-Test file(s). Based on this strategy the following tests are automatically
performed:

• Build native application

• Run native application

• Import and patch input application

• Apply transformation

• SCATE output patch

• Create application with MPC

• Build transformed application

• Run transformed application

• File output diff

All these tests produce a status like ’passed’ or ’failed’. The outcome of the scate test
script can be visualized in the form of an HTML page, see figure 7.

Run the following commands:

cd ˜/Triple-M/release/pc/Generate/
scate_test patch > test.html

Providing one or more test cases - ‘patch’ in our case - is optional. The script will other-
wise traverse the directory tree in search of a ‘Makefile-Test’. In the example at hand one
will get an error during compilation of the generated sources due to a known bug, see also
page 19. The line “using namespace ttl;” in the generated output files “Consumer.h”
line 14 and “Producer.h” line 14 should be commented out. As described above on
page 34 source code patching can also be used to manually correct bugs in the transformed
source code. We can fix this bug in SCATE by commenting out the content in the interme-
diate files ‘Consumer.preClass.h.MPC’ and ‘Producer.preClass.h.MPC’. These ’*.MPC’
are produced by SCATE, and will be used as input by MPC. Changes to any of these in-
termediate files will therefore end up in the final process network. Rerunning scate test
should now be succesfull. The ‘File output diff’ still test ends with not equal, because
the test is designed to perform a diff on an output file generated by the application. In the
present example no output file is generated, instead a comparison is done on all files in
the directory. This test can be suppressed by commenting out the target ‘has-run-cmp’ in
the ‘Makefile-Test’.

40

Figure 7: Test report.

5 Problems, Troubleshooting

In case of trouble one could try to remove all the intermediate files produced by SCATE
using the command 19:

make -f Makefile-Scate clean

or

make -f Makefile-Scate very_clean

This latter command also removes the preprocessed application files, ‘Make.SrcVars’,
and the load order file. Note, after this step it requires an extra (automatic) SCATE run to
re-determine the load order.

Whenever possible use version control. This allows one to use:

cvs diff

to figure out what has changed since the previous iteration..

19This command should only be used when SCATE output patching is NOT used. Otherwise one could
unintentionally remove manual changes as well.

41

5.1 FAQ

unexpected token When the CPP INCLUDES path is not set correctly one will get an
error: ‘No such file or directory’. Still a *.cpp file is produced containing wrong
information. One should delete this file before continuing:

make -f Makefile-Scate very_clean

Continuing without removing the *.cpp file, while fixing the CPP INCLUDES path
will lead to an error: ‘unexpected token:’

symtab The ’-symtab symtabfilename’ should only be used as an EXTRA FLAGS option
in “Makefile-ScateSetup”. Otherwise an error message will occur:
‘unexpected token: API’

cvs For questions about cvs we refer to the manual [9].

5.2 Bugs

Bugs can be reported at sourceforge [4].

5.3 Wishlist

All remarks are welcome.

42

A Examples: source code

A.1 File and directory restructuring

This section contains the output source code of the example described in section 4.1.

The declaration of class PC can be found in the header file ‘PC.h’:

43

01 // WARNING : This file has been automatically generated,
02 // ======= DO NOT EDIT unless you know what you are doing...
03 //
04 // PC.h, generated by Mpc for user Triple-M
05 //
06 // Creation Date : Wed May 11 16:48:56 2005
07 //
08
09 #ifndef PC_INCLUDED
10 #define PC_INCLUDED
11
12 #include "channel.h"
13 #include "network.h"
14 #include "ttl_use_namespace.h"
15
16 #include "ttlTypes.h"
17 #include "cb_channel.h"
18 #include "rb_channel.h"
19 #include "rn_channel.h"
20 #include "dbi_channel.h"
21 #include "dbo_channel.h"
22 #include "dno_channel.h"
23 #include "dni_channel.h"
24 #include "cb_in_port.h"
25 #include "cb_out_port.h"
26
27 #include "Consumer.h"
28 #include "Producer.h"
29
30 class PC: public Network
31 {
32 public:
33 // constructor
34 PC
35 (Id n,
36 int length);
37
38 // extra public member function declarations
39 const char* type() const;
40
41 private:
42
43 // input ports
44 int length_param;
45
46 // channels
47 Channel<int> a;
48
49 // processes and networks
50 Consumer i0_Consumer;
51 Producer i0_Producer;
52 };
53
54 #endif // PC_INCLUDED

44

The declaration of this class can be found in the header file ‘PC.cc’:

01 // WARNING : This file has been automatically generated,
02 // ======= DO NOT EDIT unless you know what you are doing...
03 //
04 // PC.cc, generated by Mpc for user Triple-M
05 //
06 // Creation Date : Wed May 11 16:48:56 2005
07 //
08
09 #include "PC.h"
10
11 PC::PC
12 (Id n,
13 int length)
14 :
15 Network(n),
16 // ports
17 length_param(length),
18 // channels
19 a(id("a"), 256),
20 // processes and networks
21 i0_Consumer
22 (
23 id("i0_Consumer"),
24 a
25),
26 i0_Producer
27 (
28 id("i0_Producer"),
29 length_param,
30 a
31)
32 {}

The toplevel main function can be found in file ‘PCMain.cc’:

45

01 // WARNING : This file has been automatically generated,
02 // ======= DO NOT EDIT unless you know what you are doing...
03 //
04 // PCMain.cc, generated by Mpc for user Triple-M
05 //
06 // Creation Date : Wed May 11 16:48:56 2005
07 //
08
09 #include "PC.h"
10
11 const char* PC::type() const
12 {
13 return "PC";
14 }
15 int main(int argc, char* argv[])
16 {
17 PC pc(id("pc"), 1000);
18 run(pc);
19 printf("%s", "The end.");
20 return 0;
21 }

The producer process is represented by the class Producer. This class is declared in the
header file ‘Producer.h’:

46

01 // WARNING : This file has been automatically generated,
02 // ======= DO NOT EDIT unless you know what you are doing...
03 //
04 // Producer.h, generated by Mpc for user Triple-M
05 //
06 // Creation Date : Wed May 11 16:48:56 2005
07 //
08
09 #ifndef Producer_INCLUDED
10 #define Producer_INCLUDED
11
12
13 // pre class items
14 //using namespace ttl;
15
16 #include "cb_in_port.h"
17 #include "cb_out_port.h"
18 #include "process.h"
19 #include "ttl_use_namespace.h"
20
21 #include "ttlTypes.h"
22 #include "cb_out_port.h"
23
24
25 class Producer: public Process
26 {
27 public:
28 // constructor
29 Producer
30 (Id n,
31 int length,
32 CbOut<int>& o);
33
34 // extra public member function declarations
35 const char* type() const;
36 void main();
37
38 private:
39
40 // input ports
41 int n;
42
43 // output ports
44 Port< CbOut<int> > p;
45 };
46
47 #endif // Producer_INCLUDED

The constructor can be found in the source file ‘Producer.cc’:

47

01 // WARNING : This file has been automatically generated,
02 // ======= DO NOT EDIT unless you know what you are doing...
03 //
04 // Producer.cc, generated by Mpc for user Triple-M
05 //
06 // Creation Date : Wed May 11 16:48:56 2005
07 //
08
09 #include "Producer.h"
10
11 Producer::Producer
12 (Id n,
13 int length,
14 CbOut<int>& o)
15 :
16 Process(n),
17 // ports
18 n(length),
19 p(id("p"), o)
20 {}

The implementation of the member functions can be found in the source file ‘Producer-
Main.cc’:

01 // WARNING : This file has been automatically generated,
02 // ======= DO NOT EDIT unless you know what you are doing...
03 //
04 // ProducerMain.cc, generated by Mpc for user Triple-M
05 //
06 // Creation Date : Wed May 11 16:48:56 2005
07 //
08
09 #include "Producer.h"
10
11 const char* Producer::type() const
12 {
13 return "Producer";
14 }
15 void Producer::main()
16 {
17 write(p, n);
18 for (int i = 0; i < n; i++)
19 {
20 write(p, i);
21 }
22 }

The consumer process is represented by the class Consumer. This class is declared in the
header file ‘Consumer.h’:

48

01 // WARNING : This file has been automatically generated,
02 // ======= DO NOT EDIT unless you know what you are doing...
03 //
04 // Consumer.h, generated by Mpc for user Triple-M
05 //
06 // Creation Date : Wed May 11 16:48:56 2005
07 //
08
09 #ifndef Consumer_INCLUDED
10 #define Consumer_INCLUDED
11
12
13 // pre class items
14 //using namespace ttl;
15
16 #include "cb_in_port.h"
17 #include "cb_out_port.h"
18 #include "process.h"
19 #include "ttl_use_namespace.h"
20
21 #include "ttlTypes.h"
22 #include "cb_in_port.h"
23
24
25 class Consumer: public Process
26 {
27 public:
28 // constructor
29 Consumer
30 (Id n,
31 CbIn<int>& i);
32
33 // extra public member function declarations
34 const char* type() const;
35 void main();
36
37 private:
38
39 // input ports
40 Port< CbIn<int> > p;
41 };
42
43 #endif // Consumer_INCLUDED

The implementation of the constructor can be found in the source file ‘Consumer.cc’:

49

01 // WARNING : This file has been automatically generated,
02 // ======= DO NOT EDIT unless you know what you are doing...
03 //
04 // Consumer.cc, generated by Mpc for user Triple-M
05 //
06 // Creation Date : Wed May 11 16:48:56 2005
07 //
08
09
10 // include items
11 #include <assert.h>
12 #include <iostream>
13
14 #include "Consumer.h"
15
16 Consumer::Consumer
17 (Id n,
18 CbIn<int>& i)
19 :
20 Process(n),
21 // ports
22 p(id("p"), i)
23 {}

The implementation of the member functions can be found in the source file ‘Consumer-
Main.cc’:

50

01 // WARNING : This file has been automatically generated,
02 // ======= DO NOT EDIT unless you know what you are doing...
03 //
04 // ConsumerMain.cc, generated by Mpc for user Triple-M
05 //
06 // Creation Date : Wed May 11 16:48:56 2005
07 //
08
09 #include <assert.h>
10 #include <iostream>
11 #include "Consumer.h"
12
13 using namespace std;
14 const char* Consumer::type() const
15 {
16 return "Consumer";
17 }
18 void Consumer::main()
19 {
20 int n;
21 read(p, n);
22 for (int i = 0; i < n; i++)
23 {
24 int j;
25 read(p, j);
26 assert(i == j);
27 printf("Value i=%d, j=%d\n", i, j);
28 }
29 }

51

A.2 Network transformations

This section contains the output source code of the example described in section 4.3.

52

// WARNING : This file has been automatically generated,
// ======= DO NOT EDIT unless you know what you are doing...
//
// PC.h, generated by Mpc for user Triple-M
//
// Creation Date : Wed Jun 15 10:49:01 2005
//

#ifndef PC_INCLUDED
#define PC_INCLUDED

#include "channel.h"
#include "network.h"
#include "ttl_use_namespace.h"

#include "flattenTypes.h"
#include "cb_channel.h"
#include "rb_channel.h"
#include "rn_channel.h"
#include "dbi_channel.h"
#include "dbo_channel.h"
#include "dno_channel.h"
#include "dni_channel.h"
#include "cb_out_port.h"
#include "cb_in_port.h"

#include "Producer.h"
#include "Consumer.h"

class PC: public Network
{

public:
// constructor
PC

(Id n,
int length);

// extra public member function declarations
const char* type() const;

private:

// input ports
int length_param;

// channels
Channel<int> a;

// processes and networks
Producer i0_Producer;
Consumer i0_Consumer;

};

#endif // PC_INCLUDED

53

// WARNING : This file has been automatically generated,
// ======= DO NOT EDIT unless you know what you are doing...
//
// PC.cc, generated by Mpc for user Triple-M
//
// Creation Date : Wed Jun 15 10:49:01 2005
//

#include "PC.h"

PC::PC
(Id n,
int length)

:
Network(n),
// ports
length_param(length),
// channels
a(id("a"), 256),
// processes and networks
i0_Producer
(

id("i0_Producer"),
length_param,
a

),
i0_Consumer
(

id("i0_Consumer"),
a

)
{}

54

// WARNING : This file has been automatically generated,
// ======= DO NOT EDIT unless you know what you are doing...
//
// PCMain.cc, generated by Mpc for user Triple-M
//
// Creation Date : Wed Jun 15 10:49:01 2005
//

#include "PC.h"

const char* PC::type() const
{

return "PC";
}
int main(int argc, char* argv[])
{

PC pc(id("pc"), 1000);
run(pc);
printf("%s", "The end.");
return 0;

}

55

References

[1] E.A. de Kock, G. Essink, W.M.J. Smits, P. van der Wolf, J.-Y. Brunel, W.M. Krijutzer,
P. Lieverse, and K.A. Vissers. YAPI; Application Modeling for Signal Processing
Systems. In 37th Design Automation Conference, pages 402–405, 2000.

[2] http://sourceforge.net/projects/y-api/ .

[3] Pieter van der Wolf, Erwin de Kock, Thomas Hendriksson, Wido Kruijtzer, and Ger-
ben Essink. Design and Programming of Embedded Multiprocessors: An Interface-
Centric Approach. Stockholm, Sweden, September 8–10 2004. CODES + ISSS.

[4] http://sourceforge.net/projects/scate/ .

[5] http://sourceforge.net/projects/mpsc/ .

[6] D. Alders and O. Popp. The Triple-M software infrastructure for YAPI and TTL
source code analysis and transformations (http://sourceforge.net/projects/scate/) .
Technical report, July 2005.

[7] Software Portability with imake. Number ISBN: 1-56592-226-3. O’Reilly & Asso-
ciates, Inc., 1996.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[9] https://www.cvshome.org/docs/manual/ .

56

Author(s) D. Alders

Title Scate Manual

57

